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Abstract. We establish the framework for the comparison of πK scattering amplitudes from SU(3) chiral
perturbation theory with suitable dispersive representations which result from the combination of certain
fixed-t dispersion relations with dispersion relations on hyperbolic curves. This allows for predictions for
some combinations of low energy constants appearing in higher order calculations of chiral perturbation
theory. Using a simple parametrization for the lowest partial waves, first estimates for some combinations
are presented.

1 Introduction

The pseudoscalar octet of pions, kaons and the η may be
viewed as the Goldstone bosons of the spontaneously bro-
ken approximate symmetry of the QCD Lagrangian whose
interactions may be described by SU(3) chiral perturba-
tion theory [1]. The πK scattering amplitudes have been
computed in this framework sometime ago, see, [2,3]. For
an extensive review of phenomenological information prior
to these developments, including dispersion relation anal-
ysis, we refer to [4]. Our aim here is to set up the appro-
priate framework within which the chiral amplitudes can
be compared with dispersive representations of the ampli-
tudes, of the type established in axiomatic field theory.
It is instructive to first discuss ππ scattering which has

been studied in considerable detail. The ππ scattering am-
plitude has been computed to one-loop accuracy [5], and
to two loops in SU(2) chiral perturbation theory [6,7], and
at one-loop accuracy in SU(3) chiral perturbation theory
[2]. In SU(2) chiral perturbation theory up to two-loop ac-
curacy, the amplitude is described by three functions of a
single (Mandelstam) variable, whose absorptive parts are
given in terms of those of the three lowest partial waves [8].
One replaces them by an dispersive representation which
yields an amplitude with an effective low energy polyno-
mial and a dispersive tail [6,9]. A dispersion relation rep-
resentation with two subtractions is an ideal starting point
for rewriting them in a form whereby a comparison with
the chiral representation can be made, when the S– and
P–wave absorptive parts alone are retained. The absorp-
tive parts of the higher waves contribute to the polyno-
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mial pieces only. We note that the analysis in the past
has been performed only for elastic scattering in SU(2)
chiral perturbation theory; we extend it in a straightfor-
ward manner to SU(3) chiral perturbation theory where
KK and ηη are present in intermediate states. The re-
markable synthesis of dispersion relation phenomenology
(see [10] and references therein) and chiral perturbation
theory has recently led to a highly accurate prediction for
the iso-scalar S–wave scattering length [11].
Recently, there has been an revival in the interest in

πK scattering. There are indications for a flavour depen-
dence of the size of the quark condensate [12]. As πK scat-
tering is the most simple SU(3)–process involving kaons,
it is the suitable place to test this dependence. Further-
more, there are plans to measure the lifetime of πK–atoms
to an accuracy of 20% in the DIRAC experiment at CERN
[13]. This would allow for a very precise determination of
the scattering length a−

0 within an error of 10%. The role
of the latter must not be understated: one may show that
in SU(3) chiral perturbation theory to one loop the scat-
tering length a−

0 depends only on the constant L
r
5 and the

pion and the kaon decay constant. Furthermore, Lr
5 is it-

self determined, at this order, by the ratio of these two
decay constants, see [1], leaving a−

0 free of any low en-
ergy constants. This observation is being published here
for the first time, although it was already known [14] to
the authors of [2]. Note that a similar statement holds for
the tree–level prediction of a−

0 in generalized chiral per-
turbation theory, where the a priori unknown low energy
constants appear even at tree–level [15]. Therefore, a com-
parison of experimental values of a−

0 with its theoretical
predictions from chiral perturbation theory is a stringent
test of the framework of chiral symmetry breaking. Apart
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from that, an independent high precision estimate for this
scattering length calls for a fresh partial wave analysis
since this threshold parameter can play the role of a sub-
traction constant in πK dispersion relations.
The structure of the πK amplitudes is best revealed

when we consider a system of amplitudes defined by
T+(s, t, u) and T−(s, t, u), which are even and odd under
the interchange of s and u, respectively. We demonstrate
that each of these chiral amplitudes may be written down
in terms of three functions of single variables whose ab-
sorptive parts are related to those of the S– and P–waves
in the s– and t–channels.
The dispersion relations we employ for T+ are the ones

as given in [16] where fixed-t dispersion relations are com-
bined with dispersion relations on hyperbolic curves. We
introduce a new dispersion relation here for T−. Retain-
ing only the absorptive parts of the S– and P–waves we
demonstrate the equivalence of the structure of the rep-
resentation to that of the chiral result. This allows us to
match the representations in the low energy domain, af-
ter adding the contributions of the higher waves which
are only polynomials to this order. Since πK scattering
at low energies is dominated by the S– and P–waves, a
detailed knowledge of these waves is important. Stringent
constraints resulting from axiomatic analyticity and cross-
ing are best expressed in terms of integral (Steiner-Roy)
equations [4,17–19]. These equations are the ideal start-
ing point for a future analysis of πK scattering informa-
tion. Due to the importance of these equation in such an
analysis, the Steiner-Roy equations in the S- and P -wave
approximation for the S- and P -waves are given here ex-
plicitly. (It may be noted that one can proceed to analyze
πN scattering [20] in an analogous manner.)
While an accurate phase shift parametrization, inde-

pendent from input from chiral perturbation theory is
awaited, we use a simple K-matrix approach to saturate
the dispersion relations which then provide the first esti-
mates for certain combinations of the low energy constants
of SU(3) chiral perturbation theory from πK scattering.
The plan of the paper is as follows: in Sect. 2 we es-

tablish our notation and conventions, in Sect. 3 we carry
out the decomposition of the one-loop πK amplitudes
into functions of single variables and then discuss the
method of replacing them with a dispersive representa-
tion. In Sect. 4 the dispersion relations are considered and
rewritten in the S– and P–wave absorptive part approx-
imation, the contributions of the higher waves are dis-
cussed, and the comparison with the chiral amplitude is
outlined. Furthermore, we explicitly give the Roy equa-
tions for the lowest πK partial waves. In Sect. 5 we sat-
urate the dispersion relations with phenomenological ab-
sorptive parts and discuss the consequences. In Sect. 6 we
provide a discussion and a summary of the results. Ap-
pendix A briefly summarizes the results obtained when
applying the matching mentioned above to SU(3) ππ scat-
tering, in Appendix B functions of single variables of in-
terest are listed, and in Appendix C the kernels of the
Steiner-Roy integral equations for the S– and P–waves
are given.

2 Notation and conventions

We consider the process

πI1(p1) +KJ1(q1)→ πI2(p2) +KJ2(q2),

with the four-momenta pi, qi and the isospin Ii and Ji of
the pions and the kaons, respectively. The Mandelstam
variables are defined as (Σ ≡ M2 +m2)

s = (p1 + q1)2, t = (q1 − q2)2, u = (q1 − p2)2,
with

s+ t+ u = 2Σ,

where M and m are the pion and the kaon mass, respec-
tively. In the s-channel the center of mass scattering angle
Θs and momentum qs are given by (∆ ≡ M2 −m2)

zs ≡ cosΘs = 1 +
t

2q2s
=
t− u+ ∆2

s

4q2s
,

q2s =
(s− (m−M)2)(s− (m+M)2)

4s
,

and the partial wave decomposition is defined by

T Is(s, t, u) = 16π
∑
(2l + 1)f Is

l (s)Pl(zs).

The partial waves may then be parametrized by the
phase shifts δI

l and the inelasticities η
I
l ,

f I
l (s) =

√
s

2qs
1
2i

{
ηI

l (s)e
2iδI

l (s) − 1
}
,

and have the threshold expansion

Re f I
l (s) =

√
s

2
q2l
{
aI

l + b
I
l q

2 +O(q4)
}
.

In the t-channel, the center of mass momenta of the pion
and the kaon are qt and pt, respectively, and the centre of
mass scattering angle Θt is given by

zt ≡ cosΘt =
s+ p2t + q

2
t

2qtpt
=
s− u
4ptqt

,

pt =

√
t− 4m2

4
, qt =

√
t− 4M2

4
.

The partial waves are defined by

T It(s, t, u) = 16π
√
2
∑
(2l + 1)f It

l (t)Pl(zt).

Once one of the isospin amplitudes is known the other and
combinations of these are fixed by crossing symmetry:

T 1/2(s, t, u) =
3
2
T 3/2(u, t, s)− 1

2
T 3/2(s, t, u),

T+(s, t, u) ≡ 1
3
T 1/2(s, t, u) +

2
3
T 3/2(s, t, u),
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=
1√
6
T It=0(s, t, u),

T−(s, t, u) ≡ 1
3
T 1/2(s, t, u)− 1

3
T 3/2(s, t, u)

=
1
2
T It=1(s, t, u)

It may be seen from the above that T+(s, t, u) is even
under the interchange of s and u, whereas T−(s, t, u) is
odd.

3 Decomposition of the chiral amplitudes

In the framework of one-loop SU(3) chiral perturbation
theory, the explicit expression for T 3/2(s, t, u) has been
presented in [2]. One then constructs the two amplitudes
of interest T+(s, t, u) and T−(s, t, u). It may be seen that
these can now be decomposed into terms involving func-
tions of single variables only:

T+(s, t, u) =Z+
0 (s) + Z

+
0 (u) +

(
t− s+ ∆

2

u

)
Z+

1 (u)

+
(
t− u+ ∆

2

s

)
Z+

1 (s) + Z
+
t (t),

T−(s, t, u) =Z−
0 (s)− Z−

0 (u) +
(
t− s+ ∆

2

u

)
Z−

1 (u)

−
(
t− u+ ∆

2

s

)
Z−

1 (s) + (s− u)Z−
t (t).

(1)

Written in this form, the imaginary parts of the Z’s are
related to those of the lowest partial waves in the following
manner (s ≥ (m+M)2, t ≥ 4M2):

ImZ±
0 (s) = 16π Im f

±
0 (s),

ImZ±
1 (s) =

12π
q2s
Im f±

1 (s),

ImZ+
t (t) =

16π√
3
Im f It=0

0 (t),

ImZ−
t (t) = 6

√
2π Im

f It=1
1 (t)
ptqt

.

(2)

In Appendix B we present our choice of Z±
i , i = 0, 1, t

1.
The imaginary parts of Z±

0 and Z±
1 receive contributions

from the πK and Kη loops with the lower cut starting
at the πK threshold s = (M + m)2. On the other hand
the imaginary parts of Z±

t receive contributions from the
ππ and KK̄ loops and Z+

t alone from ηη loops, with the
lowest cut starting at the ππ threshold s = 4M2. The
former when written out in terms of amplitudes of definite
iso-spin in the s− channel are such that they respect the
elastic unitarity condition

Imf I
l (s) =

2qs√
s
|f I

l (s)|2.
1 The decomposition does not uniquely fix the algebraic

parts of the functions, which is a consequence of not all the
Mandelstam variables being independent.

The latter respect the principle of extended unitarity, viz.

argf It=0
0 (t) = δ00(t)(ππ), argf It=1

1 (t) = δ11(t)(ππ),

if 4M2 ≤ t ≤ 4m2.

Keeping this in mind, and using (2), it can be shown that
the Z±

i , i = 0, 1, t verify the following relations (written
out to enable a comparison of the chiral and dispersive
amplitudes to this order in chiral perturbation theory):

Z±
0 (s) =

α±
0

s
+ β±

0 + γ
±
0 s+ δ

±
0 s

2

+ 16s3
∫ ∞

(m+M)2

ds′

s′3
Im f±

0 (s
′)

s′ − s ,

Z±
1 (s) = β

±
1 + γ

±
1 s+ 12s

2
∫ ∞

(m+M)2

ds′

s′2
1
q2s′

Im f±
1 (s

′)
s′ − s ,

Z+
t (t) = β

+
t + γ

+
t t+ δ

+
t t

2 +
16t3√
3

∫ ∞

4M2

dt′

t′3
Im f It=0

0 (t′)
t′ − t ,

Z−
t (t) = β

−
t + γ

−
t t+ 6

√
2t2
∫ ∞

4M2

dt′

t′2
1

t′ − t Im
f It=1
1 (t′)
pt′qt′

.

(3)

The subtraction constants α±
i , β

±
i , γ

±
i , and δ

±
i depend on

the low energy constants Lr
i and may be simply evalu-

ated from the explicit expressions we have provided for
the Z±

i , i = 0, 1, t. Note that the appearance of the poles
in Z±

0 is due to the unequal masses of the particles. How-
ever, they cancel the kinematic poles appearing in the co-
efficients of Z±

1 such that in the chiral representation (1)
these poles disappear. With (3) and (1) we may write

T+(s, t, u) =
2β+

0 + β
+
t − 2 (m4 + 6m2M2 +M4) γ+

1

+(s+ u)
(
γ+
0 − β+

1

)
+
(
s2 + u2) (γ+

1 + δ
+
0

)
+t
(
2β+

1 + 6
(
m2 +M2) γ+

1 + γ
+
t

)
+ t2

(
δ+t − 2 γ+

1

)
+16
∫ ∞

(m+M)2

d s′

s′3

[
s3

s′ − s +
u3

s′ − u
]
Imf+

0 (s
′)

+
16√
3
t3
∫ ∞

4M2

d t′

t′3
Im f It=0

0 (t′)
t′ − t

+12 s2
(
t− u+ ∆

2

s

)∫ ∞

(m+M)2

d s′

s′2
1
q2s′

Im f+
1 (s

′)
s′ − s

+12u2
(
t− s+ ∆

2

u

)∫ ∞

(m+M)2

d s′

s′2
1
q2s′

Im f+
1 (s

′)
s′ − u , (4)

and

T−(s, t, u) =(
β−

1 + β
−
t + γ

−
0

)
(s− u) + (γ−

1 + γ
−
t

)
t (s− u)

+δ−
0

(
s2 − u2)+ 16∫ ∞

(m+M)2

d s′

s′3

[
s3

s′ − s − u3

s′ − u
]

×Im f−
0 (s

′) + 6
√
2 t2(s− u)

∫ ∞

4M2

d t′

t′2(t′ − t)
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×Im f
It=1
1 (t′)
qt′pt′

+ 12s2
(
t− u+ ∆

2

s

)∫ ∞

(m+M)2

d s′

s′2

× 1
q2s′

Im f−
1 (s

′)
s′ − s − 12u2

(
t− s+ ∆

2

u

)∫ ∞

(m+M)2

d s′

s′2

× 1
q2s′

Im f−
1 (s

′)
s′ − u . (5)

The polynomial part of T± then reads2, after eliminating
the ambiguity associated with the mass shell condition
s+ t+ u = 2Σ (see footnote 1):

T+
P,χ(s, t, u) ={
2β+

0 + β
+
t + 2

[
∆2γ+

1 −Σ(β+
1 − γ+

0 )

+Σ2(δ+0 − γ+
1 )
]}
+
{
3β+

1 − γ+
0 + γ

+
t

−2Σ(δ+0 − 2γ+
1 )
}
t+

1
2
(δ+0 − 3γ+

1 + 2δ
+
t )t

2

+
1
2
(δ+0 + γ

+
1 )(s− u)2,

T−
P,χ(s, t, u) =

(β−
1 + β

−
t + γ

−
0 + 2Σδ

−
0 )(s− u)

+(γ−
1 + γ

−
t − δ−

0 )(s− u)t. (6)

It might be noted that chiral perturbation theory could
provide an accurate description of the πK scattering am-
plitude in the low-energy domain, if we could compare the
representation given above with a suitable representation
provided by dispersion relations, upon exploiting analyt-
icity and crossing properties of the amplitudes. Further-
more, it is the six lowest partial waves that essentially
determine the low-energy structure completely and also
fix the low energy constants when the chiral and disper-
sive representations are compared, up to some unknown
subtraction constants, a role that is played by the scat-
tering lengths. These partial waves, in principle, are re-
lated through analyticity and crossing by integral equa-
tions that are generated by the dispersion relations for the
amplitudes T+ and T−. In the next section it is precisely
those dispersion relations which provide this framework
which are first set up and analyzed and then used to gen-
erate the system of integral equations. When the absorp-
tive parts of all l ≥ 2 waves are neglected, the system of
equations is a closed system of equations for these waves
and imposing unitarity on the partial waves constrains
them further. Such a system could be used in the future
for an analysis of presently available and forthcoming data
to pin down the scattering lengths within relatively small
uncertainties and to determine the low energy constants
through a program of sum rules.
Note that the πK scattering amplitude at tree-level in

generalized chiral perturbation theory has been discussed
in [15] and in the heavy-kaon effective theory [21]. Our
methods can be extended to analyze these theories as well.

2 The explicit expressions for α±
i , β±

i , γ±
i , and δ±

i may be
obtained from the authors.

4 Dispersion relations for πK scattering

In field theory the scattering amplitudes T+ and T− verify
fixed-t dispersion relations, under conventional assump-
tions regarding the high energy behaviour, the former with
two subtractions and latter with none. In practice, we have
found that in order to meet the requirements of matching
the chiral expansion with the axiomatic representation,
dispersion relations with two subtractions for T− as well
prove to be convenient. In [16], the unknown t- depen-
dent subtraction function was eliminated by considering
dispersion relations on a certain hyperbola, s · u = ∆2,
resulting in a representation that we find most suitable
for our purposes. The primary reason for this is that it
is the choice of comparing the fixed-t dispersion relations
and the hyperbolic dispersion relations on the hyperbola
given above and at t = 0 which ensures that the role of
the subtraction constant is played by the scattering length
(see below). A different choice would have led to the value
of the scattering amplitude at a kinematic point that does
not correspond to the threshold to be the effective subtrac-
tion point. The fixed-t dispersion relation for T+ is given
by

T+(s, t, u) =

8π(m+M)a+
0 +

1
π

∫ ∞

(m+M)2

d s′

s′2

[
s2

s′ − s +
u2

s′ − u
]

×A+
s (s

′, t) + S+ + L+(t) + U+(t). (7)

The expressions for S+, L+(t), and U+(t) can be found
in [16], which when adopted to our normalization conven-
tions for the amplitude are

S+ =
1
2π

∫ ∞

(m+M)2
d s′

∆2 − s′Σ
q2s′s′2

A+
s (s

′, t′∆2),

L+(t) =
t

π

∫ ∞

4M2

d t′

t′(t′ − t)A
+
t (t

′, ∆2),

U+(t) =
1
π

∫ ∞

(m+M)2
d s′

s′(2Σ − t)− 2∆2

s′2(4q2s′ + t)
A+

s (s
′, t′∆2)

− 1
π

∫ ∞

(m+M)2
d s′

×s
′(2Σ − t)2 − 2∆2s′ −∆2(2Σ − t)

s′3(4q2s′ + t)
A+

s (s
′, t).

It is important to keep in mind that the absorptive parts
A+

s (s
′, t′∆2) and A+

t (t′, ∆2) are evaluated on the hyperbola
defined by s′ ·u′ = ∆2. The hyperbolic dispersion relation
for s and u lying on a hyperbola s · u = b may be written
as

T+(t, b) =
t

π

∫ ∞

4M2

d t′

t′
A+

t (t′, b)
t′ − t +

1
π

∫ ∞

(m+M)2

d s′

s′

×
[

s

s′ − s +
u

s′ − u
]
A+

s (s
′, t′b) + h(b), (8)

where the explicit expression for h(b) may be found in
[16]. We do not exhibit it here since this expression only
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enters the computation for the t− channel partial wave
equation, and does not directly enter our considerations. It
must also be noted that combining fixed-t and hyperbolic
dispersion relations yields an effective dispersion relation
on which there are no crossing constraints at a fixed value
of s · u = b.
For the amplitude T−(s, t, u) we introduce a new dis-

persion relation. This is achieved by first considering

T−(s, t, u) =
1
π

∫ ∞

(m+M)2

d s′

s′2

[
s2

s′ − s − u2

s′ − u
]

×A−
s (s

′, t) + d(t)(s− u). (9)

The subtraction function d(t) is determined by writing
down a hyperbolic dispersion relation on s · u = b for
T̃−(t, b) = T−(t, b)/(s− u)

T̃−(t, b) =
t

π

∫ ∞

4M2

d t′

t′
Ã−

t (t′, b)
t′ − t +

1
π

∫ ∞

(m+M)2

d s′

s′

×
[

s

s′ − s +
u

s′ − u
]
Ã−

s (s
′, t′b) + g(b). (10)

We note that these dispersion relations are guaranteed
to converge since the fixed-t dispersion is already twice-
subtracted and a singly subtracted dispersion relation for
T̃− is equivalent to a twice-subtracted dispersion relation
for T−. By equating (9) and (10) at t = 0 and b = ∆2 we
find:

d(t) = 2π
m+M
mM

a−
0 + S

− + L−(t) + U−(t),

S− =
1
2π

∫ ∞

(m+M)2
d s′

∆2 − s′Σ
s′q2s′(s′2 −∆2)

A−
s (s

′, t′∆2),

L−(t) =
t

π

∫ ∞

4M2

d t′

t′(t′ − t) Ã
−
t (t

′, ∆2),

U−(t) =
1
π

∫ ∞

(m+M)2
d s′
[

1
∆2 − s′2 +

1
s′(4q2s′ + t)

]
×A−

s (s
′, t′∆2)

+
1
π

∫ ∞

(m+M)2
d s′
[
1
s′2

− 1
s′(4q2s′ + t)

]
A−

s (s
′, t).

The corresponding expression for g(b) may be computed
by following the procedure that led to the expressions
above, and is not exhibited here since this expression only
enters the computation for the t− channel partial wave
equation.

4.1 Dispersion relations
with S− and P–wave absorptive parts

To perform a comparison of the amplitudes T± in their
chiral and dispersive framework, we saturate the above
fixed-t dispersion relations with S- and P -waves. As it is
a straightforward calculation, we give here only two ex-
amples of contributions from the dispersion relation for

T+, showing the interplay between chiral and dispersive
representations. The integral in (7) can be written as

1
π

∫ ∞

(m+M)2

d s′

s′2

[
s2

s′ − s +
u2

s′ − u
]
A+

s (s
′, t)

= −12∆2 (s+ u)
∫ ∞

(m+M)2

d s′

s′3
1
q2s′
Im f+

1 (s
′)+16

(
s2 + u2)

×
∫ ∞

(m+M)2

d s′

s′3

[
Im f+

0 (s
′) +

3s′

4q2s′
Im f+

1 (s
′)
]

+16
∫ ∞

(m+M)2

d s′

s′3

[
s3

s′ − s +
u3

s′ − u
]
Im f+

0 (s
′)

+12 s2
(
t− u+ ∆

2

s

)∫ ∞

(m+M)2

d s′

s′2
1
q2s′

Im f+
1 (s

′)
s′ − s

+12u2
(
t− s+ ∆

2

u

)∫ ∞

(m+M)2

d s′

s′2
1
q2s′

Im f+
1 (s

′)
s′ − u . (11)

Here one finds polynomials in s and u and integrals which
are identical in structure to three of the integrals in (4).
The last of the integrals in (4) has a structure whose dis-
persive counterpart arises from L+(t). Furthermore, U+(t)
is quadratic in t in the S- and P -wave approximation,

U+(t) =

−24 t2
∫ ∞

(m+M)2

d s′

s′2q2s′
Im f+

1 (s
′) + 16 t

∫ ∞

(m+M)2

d s′

s′2

×
(
3(s′2 + 6Σs′ −∆2)

4s′q2s′
Im f+

1 (s
′)− Im f+

0 (s
′)

)

+32
∫ ∞

(m+M)2

d s′

s′2

(
Σ Im f+

0 (s
′)

+
3
(
∆2Σ − s′ (2 (Σ2 −∆2

)
+Σs′

))
4s′q2s′

Im f+
1 (s

′)

)
.

We take this opportunity to note that the contribution of
a state of angular momentum l to U+ is a polynomial of
degree l+1, while the contribution to U− is a polynomial
of degree l. However, there does not appear to be any ele-
gant closed form expression for such contributions, which
will be of interest in the subsection on contributions from
higher waves.
Treating the remaining parts of (7) and (9) in a simi-

lar way, the polynomial part of T± can be written, after
eliminating the ambiguity associated with the mass shell
condition s+ t+ u = 2Σ as3

T+
P,disp.(s, t, u) =

x1 + 2Σx2 + 2Σ2x3 + (x4 − 2Σx3 − x2)t

+
1
2
t2(x3 + 2x5) +

1
2
(s− u)2x3, (12)

3 The integrals of the dispersive representation of T ± are
identical to the ones in (4) and (5), respectively.
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T−
P,disp.(s, t, u) =

(s− u)
{
2π
m+M
mM

a−
0 + y1 + 2Σy2 + y3 + y5

}
+t(s− u) {y4 − y2 + y6} ,

where

x1 = 8π(m+M)a+
0 + 8

∫ ∞

(m+M)2
d s′
(
∆2 −Σ s′)
s′2q2s′

× (Im f+
0 (s

′)− 3 Im f+
1 (s

′)
)

+32
∫ ∞

(m+M)2

d s′

s′2

(
Σ Im f+

0 (s
′)

+
3
[
∆2Σ − s′ {2(Σ2 −∆2) +Σ s′

}]
4s′q2s′

Im f+
1 (s

′)

)
,

x2 = −12∆2
∫ ∞

(m+M)2

d s′

s′3q2s′
Im f+

1 (s
′),

x3 = 16
∫ ∞

(m+M)2

d s′

s′3

[
Im f+

0 (s
′) +

3s′

4q2s′
Im f+

1 (s
′)
]
,

x4 =
16√
3

∫ ∞

4M2

d t′

t′2
Im f It=0

0 (t′) + 16
∫ ∞

(m+M)2

d s′

s′2

×

3
(
s′2 + 6Σ s′ −∆2

)
Im f+

1 (s
′)

4s′q2s′
− Im f+

0 (s
′)


 ,

x5 =
16√
3

∫ ∞

4M2

d t′

t′3
Im f It=0

0 (t′)

−24
∫ ∞

(m+M)2

d s′

s′2q2s′
Im f+

1 (s
′). (13)

and

y1 =
∫ ∞

(m+M)2
d s′

−12∆2

s′3q2s′
Im f−

1 (s
′),

y2 =
∫ ∞

(m+M)2

d s′

s′

[
16
s′2
Im f−

0 (s
′) +

12
s′q2s′

Im f−
1 (s

′)
]
,

y3 = 8
∫ ∞

(m+M)2
d s′

∆2 −Σs′
s′q2s′(s′2 −∆2)

× (Im f−
0 (s

′)− 3Im f−
1 (s

′)
)
,

y4 = 6
√
2
∫ ∞

4M2

d t′

t′2
Im
f It=1
1 (t′)
pt′qt′

,

y5 =
∫ ∞

(m+M)2
d s′

16∆2

s′2
(
∆2 − s′2) Im f−

0 (s
′) +
∫ ∞

(m+M)2
d s′

×
12
(
∆4 − 2∆2Σ s′ − 3∆2 s′2 + 4Σ s′3

)
s′3q2s′

(
∆2 − s′2)

×Im f−
1 (s

′),

y6 =
∫ ∞

(m+M)2
d s′

24
s′2q2s′

Im f−
1 (s

′). (14)

In the manner described above, we have established the
starting point for the comparison of the contributions of

S– and P–wave absorptive parts to the low energy poly-
nomial.

4.2 Contributions from higher partial waves

Contributions from higher partial waves are twofold. On
the one hand they contribute to polynomials as in (12). On
the other hand these waves also yield additional dispersive
integrals similar to the last three terms in (11). However,
applying the chiral power counting scheme, one can see
that the corresponding chiral integrals are of order O(q6),
so that they are neglected in chiral perturbation theory to
one loop. Therefore, only the contributions of the higher
partial waves to the polynomials in (12) are of interest
here. It may be readily seen that the l ≥ 2 partial waves
contribute to the low energy polynomial of T+at this level
as follows: the contribution coming from the fixed-t dis-
persive integral of (7) to the coefficient of (s2 + u2) reads

ζft = 16
∞∑

l=2

(2l + 1)
∫ ∞

(m+M)2

d s′

s′3
Im f+

l (s
′).

The contributions to the coefficient of t and t2 of the poly-
nomial coming from L+(t) read

ζL1 =
16√
3

∞∑
l=2

(2l + 1)
∫ ∞

4M2

d t′

t′2
Im f It=0

l (t′),

ζL2 =
16√
3

∞∑
l=2

(2l + 1)
∫ ∞

4M2

d t′

t′3
Im f It=0

l (t′),

whereas S+ contributes to the constant part of the low
energy polynomial,

ζS = 8
∞∑

l=2

(−1)l(2l + 1)

×
∫ ∞

(m+M)2
d s′
(
∆2 −Σ s′)
s′2q2s′

Im f+
l (s

′).

As noted earlier, the contribution of a partial wave of an-
gular momentum l to U+ is a polynomial in t of degree
l+1, and the three lowest coefficients contributing to (12)
can be read of from it. Then the expression below is the
sum of all such contributions:

ζU0 + ζU1t+ ζU2t
2.

An analogous procedure for the contributions to T−
from the higher waves may also be performed. The contri-
butions from the fixed-t dispersive integral of (9) will make
a contribution proportional to (s2 − u2) whose coefficient
is

ξft = 16
∞∑

l=2

(2l + 1)
∫ ∞

(m+M)2

d s′

s′3
Im f−

l (s
′).
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There is a contribution coming from L−(t) proportional
to t which reads

ξL = 2
√
2

∞∑
l=3

(2l + 1)

×
∫ ∞

4M2
d t′

1
t′2
Im
f It=1

l (t′)
qt′pt′

,

and a contribution from S− which reads

ξS = 8
∞∑

l=3

(−1)l(2l + 1)

×
∫ ∞

(m+M)2
d s′
(
∆2 −Σ s′) Im f−

l (s
′)

s′2q2s′(s′ −∆2)
.

Here we merely denote the sum of such contributions from
U− to the low energy polynomial by

ξU0 + ξU1t

The resulting polynomials then read

T+
hw(s, t, u) =

2Σ2ζft + ζS + ζU0 + (ζL1 + ζU1 − 2Σζft)t

+
(
ζL2 + ζU2 +

ζft

2

)
t2 +

ζft

2
(s− u)2,

T−
hw(s, t, u) =
(s− u)(2Σ ξft + ξS + ξU0 + (ξL + ξU1 − ξft)t). (15)

In summary, the dispersive representation for the low en-
ergy polynomial is the sum of the contributions arising
from the S– and P–wave absorptive parts, (12), and those
of the higher partial waves, (15). Once the dispersive rep-
resentation is saturated with phenomenological absorptive
parts and is compared with the chiral representation (6),
then the procedure would amount to a determination of
the low energy constants of chiral perturbation theory.

4.3 Partial wave equations

Analyticity, unitarity, and crossing symmetry lead to a set
of integral equations (Steiner-Roy equations) relating each
of the partial waves to all the other ones [4,17,18]. These
equations depend on the choice of dispersion relations.
In the case at hand, the integral equations are derived
by projecting (7)-(10) onto partial waves and by insert-
ing a partial wave expansion for the absorptive parts. For
Steiner–Roy equations based on other dispersion relations,
see [22–24]. In contrast to the dispersion relations for the
full amplitudes, the range of validity of these equations
is restricted by the Lehmann ellipse(s). Assuming Man-
delstam analyticity, the sum of partial waves for A±(s, t)
is convergent for all s if −32M2 ≤ t ≤ 4M2, implying
that the partial wave equations for the s-channel waves
are valid in the range 2.43M2 ≤ s ≤ 57.14M2. Analo-
gously, for the t-channel partial wave equations, the range
of validity is −28.2M2 ≤ t ≤ 82.2M2 [4].

The Steiner–Roy equations for the s-channel S- and P -
waves from T+ read (in the S- and P -wave approximation)

f+
l (s) = δ0,l a

+
0
m+M
2

+
∫ ∞

(m+M)2
d s′K+

l,0(s, s
′)

×Im f+
0 (s

′) +
∫ ∞

(m+M)2
d s′K+

l,1(s, s
′)Im f+

1 (s
′)

+
∫ ∞

4M2
d t′K(0)

l,0 (s, t
′)Im f It=0

0 (t′),

f It=0
0 (t)=

√
3
2
(m+M)a+

0 +
∫ ∞

(m+M)2
d s′G+

0,0(t, s
′)

×Im f+
0 (s

′) +
∫ ∞

(m+M)2
d s′G+

0,1(t, s
′)Im f+

1 (s
′)

+
∫ ∞

4M2
d t′G(0)

0,0(t, t
′)Im f It=0

0 (t′), (16)

while the ones obtained from T− are

f−
l (s) =

δl,0 a
−
0
(m+M)

2
3s2 − 2s(m2 +M2)− (m2 −M2)2

8 smM

+δl,1a−
0
(m+M)

2
m4 + (M2 − s)2 − 2m2(M2 + s)

24 smM

+
∫ ∞

(m+M)2
d s′K−

l,0(s, s
′)Im f−

0 (s
′)

+
∫ ∞

(m+M)2
d s′K−

l,1(s, s
′)Im f−

1 (s
′)

+
∫ ∞

4M2
d t′K(1)

l,1 (s, t
′)Im

f It=1
1 (t′)
qt′pt′

,

f It=1
1 (t) =

a−
0
(m+M)

2

√
t− 4m2

√
t− 4M2

6
√
2mM

+
∫ ∞

(m+M)2
d s′G−

1,0(t, s
′)Im f−

0 (s
′)

+
∫ ∞

(m+M)2
d s′G−

1,1(t, s
′)Im f−

1 (s
′)

+
∫ ∞

4M2
d t′G(1)

1,1(t, t
′)Im

f It=1
1 (t′)
qt′pt′

. (17)

The kernel functions K,G can be found in Appendix C.
We note here that this is effectively a system of closed

equations for the S– and P–waves. In order to solve them
in the low-energy region, in practice the contributions of
the absorptive parts of the l ≥ 2 waves and that of the
high energy tail of the S– and P–waves are added to-
gether to yield the driving terms for this system from the
dispersion relations (7)-(10), when expressions for the ab-
sorptive parts of the l ≥ 2 are inserted into the right hand
sides and by writing down forms for the S– and P–waves
compatible with unitarity and with the requirement that
they reproduce the scattering lengths. Such a program has
been recently carried out for ππ scattering, see [10].
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5 Low energy constants from phenomenology

The coefficients of the chiral polynomials, (6), are func-
tions of the low energy constants Lr

i whereas the coeffi-
cients of the dispersive polynomial part of the amplitudes,
(12), are given in terms of integrals over the lowest six par-
tial waves. Once the imaginary parts of these are known,
a comparison with the chiral polynomials yields the low
energy constants involved in πK scattering. As (6) and
(12) only provide six equations, only constraints for com-
binations of the seven low energy constants involved can
be derived.
In the present work we focus on the combinations 4Lr

2+
L3, 4Lr

1+L3−4Lr
4−Lr

5+4L
r
6+2L

r
8, and FπFK+4Lr

5(M
2+

m2). The first appears in the term proportional to (s−u)2
in T+, while the second one comes from the constant
part of the same amplitude. The last combination stems
from the t-independent part of the amplitude T−. Only
4Lr

2 + L3 does not explicitly depend on the scattering
lengths. Therefore we expect this combination to be the
one which can be estimated most precisely.
To evaluate the coefficients of the dispersive polynomi-

als, (13,14), we employ a K–matrix parametrization simi-
lar to the ones in [25], but with few more free parameters,
and require the resulting phase shifts to fit the experimen-
tal data of [26] in the elastic region. As the integral cut–
offs in (13) and (14) we choose the elasticity thresholds
1.69GeV2 for I = 1/2 and 2.96 GeV2 for I = 3/2. Here,
we do not take into account the contributions from the
higher partial waves. The masses of the pion, kaon, and
eta, the latter entering the calculation only through the
loop–functions, are set to M = 139.56 MeV, m = 497.67
MeV, and mη = 547.30 MeV, respectively. The decay con-
stants are Fπ = 92.4 MeV, FK = 1.22Fπ (we take the well-
established analysis for the ratio FK/Fπ in the present
work; new analyses are now available [27], and these will
be incorporated at the time the fresh Steiner-Roy equation
fits to the data are ready [28]). Furthermore, the renor-
malization scale µ is set to mρ = 769.30 MeV. For the
three combinations of low energy constants we obtain

4Lr
2 + L

r
3 = 0.0027± 0.0001,

4Lr
1 + L

r
3 − 4Lr

4 − Lr
5 + 4L

r
6 + 2L

r
8

= −0.0003± 0.0013 + 0.14GeV · a+
0 ,

Lr
5 = −0.0065± 0.0001 + 0.024GeV · a−

0 , (18)

where a±
0 are given in GeV

−1. The quoted errors are due
to varying the integral cut–offs by 20%. Note that the
coefficients of the scattering lengths, i.e. 0.14GeV−1 and
0.024GeV−1, are fixed by chiral perturbation theory.
In order to check the influence of the parametrization

on the above numerical results, we have chosen yet another
K–matrix parametrization with fewer parameters to fit
the experimental data. The quality of these fits is not as
good, especially for the I = 1/2 S–wave and the I = 3/2
P–wave, whereas the other two waves are not changed
significantly. However, as the phases of the I = 3/2 P–
wave are small at low energies, changes to this partial

wave are not important. This parametrization yields

4Lr
2 + L

r
3 = 0.0029± 0.0001,

4Lr
1 + L

r
3 − 4Lr

4 − Lr
5 + 4L

r
6 + 2L

r
8

= −0.012± 0.001 + 0.14GeV · a+
0 ,

Lr
5 = −0.012± 0.00001 + 0.024GeV · a−

0 , (19)

where again the quoted errors are due to changes in the in-
tegration cut–offs. The numerical coefficients on the right
hand sides of (18,19) generally depend on the renormal-
ization scale µ, as well. Note that the last lines in (18,19)
amount to an alternative method to fix Lr

5, which could
then be employed to determine the ratio of the pion and
the kaon decay constants. However, as the predictions of
the decay constants are much more reliable than the one
for the πK scattering length, we regard the relation be-
tween Lr

5 and a
−
0 as a consistency check for our method

than a accurate way of determining Lr
5. Comparing the

above with the values in [29],

4Lr
2 + L3 = 0.0019± 0.0013,

4Lr
1 + L3 − 4Lr

4 − Lr
5 + 4L

r
6 + 2L

r
8

= −0.0011± 0.0018
Lr

5 = 0.0014± 0.0005, (20)

one can see that our values for the first combination are
in reasonable agreement with the previous determination.
The values for the second combination of low energy con-
stants are still reasonable if the wide spread of experimen-
tal values for the scattering lengths (see [2] and references
therein),

−0.31GeV−1 ≤ a+
0 ≤ 0.34GeV−1,

0.43GeV−1 ≤ a−
0 ≤ 0.89GeV−1,

is taken into account, whereas the determination of Lr
5 is

less reliable, emphasizing the need of a detailed analysis of
the πK partial waves and the importance of the contribu-
tions of the higher partial waves to the low energy poly-
nomials. This will be done elsewhere [28]. Furthermore,
there are other recent determinations of the low energy
constants [30] and a detailed comparison will be made
when the Steiner-Roy equation fits are available [28].
Comparing the results in (18,19), one can see that the

numerical value for the first of the above combinations for
the LECs does not depend very much on the parametriza-
tion, whereas this dependence for the second and the third
combination is more substantial. Note, however, that this
dependence is accommodated by the wide spread of ex-
perimental values for the scattering lengths, again calling
for a more detailed analysis of the phase shifts and the
scattering lengths.

6 Summary and conclusions

The πK scattering problem is an important process in the
low energy sector of the strong interactions. Compared to
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Table 1. SU(3) coupling constants from ππ phase shifts (µ =
mρ)

Set 1 Set 2 Set 3

103Lr
2 1.63 1.63 1.62

103(2Lr
1 + L3) −2.34 −2.28 −2.22

103(2Lr
4 + Lr

5) −1.92 −1.56 −1.23

the closely related problem of ππ scattering, considerably
less is known about this process due to the lack of avail-
ability of experimental data, the relative paucity of theo-
retical results associated with the absence of three-channel
crossing symmetry, and the presence of unequal masses of
the particles. Despite these difficulties, here we have shown
that the results of the type established in the recent past
for ππ scattering can be extended to the πK case. We
have noted that the experimentally accessible scattering
length a−

0 at one-loop order in chiral perturbation theory
is essentially parameter free and that a precise determina-
tion of this quantity would constitute a precision test of
chiral perturbation theory.
We have established a framework within which the πK

amplitude in SU(3) chiral perturbation theory can be split
up into functions of single variables and are then replaced
by an dispersive representation that leads to an effective
low energy polynomial representation and a dispersive tail.
We have considered twice–subtracted fixed-t dispersion re-
lations with the subtraction functions determined in terms
of dispersion relations on hyperbolic curves, in particular
those for T+ which were established sometime ago, and
new ones for T−. This allows us to generate a low energy
polynomial and a dispersive tail with the same structure
as the chiral representation. We have also discussed in
some detail the contributions of the absorptive parts of
the l ≥ 2 partial waves.
Furthermore, explicit integral equations for the S– and

P–waves are given which form a closed system when the
l ≥ 2 wave absorptive parts are neglected. The contribu-
tions from those waves and the high energy part of the S–
and P–wave absorptive parts would then determine the
driving terms for these (Steiner-Roy) integral equations.
In particular, a detailed fit of experimental information to
these equations would lead to a precise determination of
a−
0 .
The comparison of chiral perturbation and dispersion

theory representation of the amplitudes yields a system
of sum rules for low energy constants of chiral perturba-
tion theory. We have used the results from a recent study
of the phase shift and elasticity information to evaluate
certain combinations of coupling constants, which do not
involve the contributions coming from the t-channel ab-
sorptive parts. First estimates for the SU(3) low energy
constants obtained from this phenomenology yield the es-
timates, see (18). These estimates compare favorably with
the determinations reported in the literature. A full par-
tial wave analysis will lead to an accurate evaluation of
the coupling constants of interest. Such a partial wave
analysis combined with chiral inputs can produce reliable

estimates for πK scattering lengths which can in princi-
ple be measured at pion-kaon atom “factories” such as
DIRAC.
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for its hospitality when part of this work was done. P. B. thanks
the Centre for Theoretical Studies, Indian Institute of Science,
Bangalore, for its hospitality when this work was initiated.

A ππ amplitude
in SU(3) chiral perturbation theory

In this brief appendix, we consider the ππ scattering am-
plitude presented in [2,3]. It is possible to split the ampli-
tude A(s, t, u) into three functions of one variable Wi(s),
i = 1, 2, 3, whose absorptive parts may be expressed in
terms of those of the three lowest partial waves f I

0 , I = 0, 2
and f1

1 . In terms of these functions, we may write A(s, t, u)
as

A(s, t, u) = 32π
{
1
3
W0(s) +

3
2
(s− u)W1(t) +

3
2
(s− t)

×W1(u) +
1
2

(
W2(t) +W2(u)− 2

3
W2(s)

)}
.

We list one choice of for the functions Wi, i = 0, 1, 2 in
Appendix B. One may now write the Wi in terms of dis-
persion relations and generate a low energy polynomial
representation. As an illustration we use the dispersive
polynomial established in [9] to evaluate the SU(3) low en-
ergy constants with the three sets of phase shifts described
there. These results are presented in Table 1 (masses, de-
cay constants and renormalization scale as in Sect. 5).
We note that these phase shifts were used to deter-

mine the values for the low energy constants li, i = 1, 2, 4
of SU(2) chiral perturbation theory. It is well known that
when the SU(3) theory is reduced to SU(2) theory, rela-
tions emerge between the low energy constants of the two
theories. The results for the li, i = 1, 2, 4 of [9] may then
be translated into the SU(3) coupling constants which are
listed in Table 2. Although the results of Table 1 and Ta-
ble 2 are in general agreement, those in Table 1 amount to
a consistent new determination. The numbers in Table 1
agree well with determinations in the literature, see, e.g.,
[1,29].
The phase shift determination of [9] were based on a

Roy equation fit whose driving terms were computed from
higher wave and asymptotic contributions that arose from
the f2(1270) and Pomeron and Regge contributions set-
ting in above an energy of ∼ 1.5 GeV, recently described
in [31]. These absorptive parts also contribute to the low
energy dispersive polynomials. We evaluate the resulting
contributions to the low energy constants whose contribu-
tions to l1 and l2 are ∼ −0.1 and 0.41, respectively and
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Table 2. SU(3) coupling constants derived from SU(2) effec-
tive theory (µ = mρ)

Set 1 Set 2 Set 3

103Lr
2 1.42 1.41 1.41

103(2Lr
1 + L3) −2.16 −2.10 −2.04

103(2Lr
4 + Lr

5) −1.55 −1.20 −0.88

to 103 Lr
2 and 10

3(2Lr
1+L3) are ∼ 0.21 and −0.05 respec-

tively. We note here that once the scattering length a0
0

is experimentally determined to within small uncertain-
ties, the Roy equation fits of [10] may be used to produce
sharp values for the combinations of low energy constants
discussed here.

B List of functions of single variables

The functions of single variables entering T+(s, t, u) are
given as

16F 2
πF

2
KZ

+
0 (s) =

3∆2(LKη(s) + LπK(s))
s

+ 2∆Σ(KKη(s) +KπK(s))

+Σ2
(
Jr

Kη(s)
3

+ 3 Jr
πK(s)

)
− s
(
4FK Fπ +∆(3KKη(s)

+5KπK(s)) + 16Σ(8Lr
2 + 2L3 + Lr

5) +Σ(J
r
Kη(s)

+7Jr
πK(s))

)
+ s2

(
64Lr

2 + 16L3 +
3 Jr

Kη(s)
4

+
19 Jr

πK(s)
4

)
,

16F 2
πF

2
KZ

+
1 (s) =

−3 (LKη(s) + LπK(s)− s (Mr
Kη(s) +M

r
πK(s)

))
,

16F 2
πF

2
KZ

+
t (s) =

8FK Fπ Σ + 128M2m2
(
4Lr

1 + L3 − 4Lr
4 − Lr

5

+4L6 + 2L8

)
− 16M2m2Jr

ηη(s)
9

+ FK Fπ∆(3µπ

−2µK − µη) + 32Σ2(4Lr
2 + L3 + Lr

5)

−s
(
64Σ(4Lr

1 + L3 − 2Lr
4) + 2M

2(Jr
ππ(s)− Jr

ηη(s))
)

+s2 (32(4Lr
1 + L3) + 3Jr

KK(s) + 4J
r
ππ(s)) ,

whereas the functions of single variables entering T−(s, t,
u) read

96F 2
KF

2
πZ

−
0 (s) =

18∆2(LKη(s) + LπK(s))
s

+12∆Σ(KKη(s) +KπK(s))

+2Σ2(Jr
Kη(s)− 3 Jr

πK(s)) + s
(
24FK Fπ − 6∆(3KKη(s)

+5KπK(s))− 96Σ(2L3 − Lr
5)− 6Σ(Jr

Kη(s)− Jr
πK(s))

)

+s2
(
96L3 +

9
2
(Jr

Kη(s) + J
r
πK(s))

)
,

96F 2
KF

2
πZ

−
1 (s) =

−18 (sMr
Kη(s) + sM

r
πK(s)− LKη(s)− LπK(s)),

96F 2
KF

2
πZ

−
t (s) = 24 s (M

r
KK(s) + 2M

r
ππ(s)).

Finally, the functions of single variables required to define
the ππ amplitude in SU(3) chiral perturbation theory can
be written as

W0(s) =
3
32π

{
s−M2

F 2
π

+
1
F 4

π

(
M4

18
Jr

ηη(s) +
1
2
(s2 −M4)2

×Jr
ππ(s) +

s2

8
Jr

KK(s)
)
+
4
F 4

π

[
(2Lr

1 + L3)

×(s− 2M2)2 + (4Lr
4 + 2L

r
5) (s− 2M2)M2

+(8Lr
6 + 4L

r
8)M

4
]}
+W2(s)

W1(s) =
s

48π

{
Mr

ππ(s) +
1
2
Mr

KK(s)
}

W2(s) =
1
16π

{
1
4F 4

π

(s− 2M2)2Jr
ππ(s) +

4Lr
2

F 4
π

(s− 2M2)2
}

For the definitions of the standard loop functions Jr
PQ(s),

Mr
PQ(s), LPQ(s), KPQ(s) and µP , see [1].

C Kernels of the partial wave equations

The kernels of the partial wave equations, (16,17), are:

K+
0,0(s, s

′) =

s′ − 2 s
π (s− s′) s′ +

∆2 −Σ s′
2π s′2 qs′2

+
ln(s− 2Σ + s′)− ln(s− 2Σ + s′ − 4 qs2)

4π qs2 ,

K+
01(s, s

′) ={(
− 3 (ln(s− 2Σ + s′)− ln(s− 2Σ + s′ − 4 qs2)

)
× (s− 2Σ + s′ − 2 qs′2

) )/(
8π qs2 qs′2

)}
+
{(
3 qs2

{
∆2 (s− s′)− s′

(
2 sΣ − 3 s s′ − 2Σ s′ + s′2

)
+4 s′ (s′ − s) qs′2

})/(
2π (s− s′) s′3 qs′2

)}
+
{(
3
{
(s− s′)

(
s′3 +∆2 (Σ + s′)− 2Σ2 s′

)
+2 s′ [s′ (2Σ + s′)− 2 s (Σ + s′)] qs′2

})/
(
2π (s− s′) s′3 qs′2

)}
,

K
(0)
0,0(s, t

′) =
t′
{
ln(t′ + 4 qs2)− ln(t′)}− 4 qs2

4
√
3π t′ qs2

,
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K+
1,0(s, s

′) =
1

2π qs2 −
{(

{ln(s− 2Σ + s′)− ln(s− 2Σ + s′

−4 qs2)
} (
s− 2Σ + s′ − 2 qs2) )/(8π qs4

)}
,

K+
1,1(s, s

′) ={(
− 3 (s− 2Σ + s′ − 2 qs′2

) )/(
4π qs2 qs′2

)}
+
{(
3
{
ln(s− 2Σ + s′)− ln(s− 2Σ + s′ − 4 qs2)

}
× (s− 2Σ + s′ − 2 qs2) (s− 2Σ + s′ − 2 qs′2

) )/
(
16π qs4 qs′2

)}
−
{(

qs
2
(
∆2 (s− s′)

−s′
(
2 sΣ − 3 s s′ − 2Σ s′ + s′2

)

+4 s′ (s′ − s) qs′2
))/(

2π (s− s′) s′3 qs′2

)}
,

K
(0)
1,0(s, t

′) ={(
t′
{
ln(t′ + 4 qs2)− ln(t′)}

−2 {2 + ln(t′)− ln(t′ + 4 qs2)
}
qs

2
)/(

8
√
3π qs4

)}
,

G+
0,0(t, s

′) =
√
3
π

(
Σ − s′
2s′q2s′

+
4√

4m2 − t√4M2 − t
× arccoth

(
t− 2 (Σ − s′)√
4m2 − t√4M2 − t

))
,

G+
0,1(t, s

′) =

3
√
3 (Σ − s′ − t)
2π s′q2s′

+
6

√
3
(
2s′q2s′ + s′ t

)
π s′q2s′

√
4m2 − t√4M2 − t

×arccoth
(

t− 2 (Σ − s′)√
4m2 − t√4M2 − t

)
,

G
(0)
0,0(t, t

′) =
t

πt′(t′ − t) ,

K−
0,0(s, s

′) ={(
−
(
3 s3 − 3 s2 s′ + 2 s s′2 + s∆2 + s′∆2

−2 s (s+ s′) Σ
))/(

2π s
(
s− s′

)

×
(
s′2 +∆2 − 2 s′Σ

))}

+
s
{
ln(s s′ −∆2)− ln(s [s+ s′ − 2Σ])}

π (s2 +∆2 − 2 sΣ) ,

K−
0,1(s, s

′) =

−3 {∆2 + s (3 s+ 2 s′ − 2Σ)}
2π s

(
s′2 +∆2 − 2 s′Σ)

−
{(
3 s
(
s′ (2 s+ s′ − 2Σ)−∆2) {ln(s s′ −∆2)

− ln(s [s+ s′ − 2Σ])}
)/(

π
(
s2 +∆2 − 2 sΣ)

×
(
s′2 +∆2 − 2 s′Σ

))}
,

K
(1)
0,1(s, t

′) =

3
{
∆2 − s (3 s+ 2 t′ − 2Σ)}

8
√
2π s t′

−
{(
3 s (2 s+ t′ − 2Σ)

×{ln(−2 s t′)− ln(−2 [∆2 + s (s+ t′ − 2Σ)])})/(
4

√
2π
(
s2 +∆2 − 2 sΣ) )},

K−
1,0(s, s

′) ={(
−
{
s4 +∆4 − 4 s3Σ − 4 s∆2Σ + 2 s2

×
(
6 s′2 + 7∆2 − 12 s′Σ + 2Σ2

)})/(
6π s

(
s2 +∆2

−2 sΣ)
(
s′2 +∆2 − 2 s′Σ

))}

+
{(
s
{
∆2 − s (s+ 2 s′ − 2Σ)} {ln(s s′ −∆2)

− ln(s [s+ s′ − 2Σ])}
)/(

π
(
s2 +∆2 − 2 sΣ)2)},

K−
1,1(s, s

′) =

(s+ s′)
2π s′ (s′ − s) +

6
(
s2 + s s′

)
π (s′ − s) (s2 +∆2 − 2 sΣ)

+
s3 s′ − 24 s2 s′2 − s s′3 − s2∆2 + s′2∆2

2π s s′ (s′ − s) (s′2 +∆2 − 2 s′Σ)
+

{(
3 s
{
∆2 − s′ (2 s+ s′ − 2Σ)}

×{∆2 − s (s+ 2 s′ − 2Σ)} {ln(s s′ −∆2)

− ln(s [s+ s′ − 2Σ])}
)/(

π
(
s2 +∆2 − 2 sΣ)2

×
(
s′2 +∆2 − 2 s′Σ

))}
,

K
(1)
1,1(s, t

′) ={(
−
(
s4 +∆4 + 4 s3 (6 t′ −Σ)− 4 s∆2Σ + 2 s2
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×
(
6 t′2 +∆2 − 12 t′Σ + 2Σ2

)))/
(
8

√
2π s t′

(
s2 +∆2 − 2 sΣ)

)}

−
{(

3 s
{
∆2 + s (s+ 2 t′ − 2Σ)} {2 s+ t′ − 2Σ}

×{ln(−2 s t′)− ln(−2 [∆2 + s (s+ t′ − 2Σ)])}
)/

(
4

√
2π
(
s2 +∆2 − 2 sΣ)2

)}
,

G−
1,0(t, s

′) ={(
−

√
2
{
8∆2 + 4Σ2 + 12 s′2 + t2

−4Σ (6 s′ + t)}
)/(

3π
{
∆2 + s′ (−2Σ + s′)}

×√
t+ 2∆− 2Σ√

t− 2∆− 2Σ
)}

+
4

√
2 (2 s′ + t− 2Σ)

π (2 (∆+Σ)− t)
√
(t+ 2∆− 2Σ)2

×arccoth
(
i

2Σ − 2 s′ − t√
2Σ − 2∆− t√−2Σ − 2∆+ t

)
,

G−
1,1(t, s

′) =

−
{(√

2
{
8∆2 + 4Σ2 + 12 s′2 + 24 s′ t+ t2

−4Σ (6 s′ + t)}
)/(

π
{
∆2 + s′ (−2Σ + s′)}

×√
t+ 2∆− 2Σ√

t− 2∆− 2Σ
)}

+
{(
12

√
2 (2 s′ + t− 2Σ) {∆2 + s′ (s′ + 2 t− 2Σ)})/(

π
{
∆2 + s′ (s′ − 2Σ)} (2 (∆+Σ)− t)

×
√
(t+ 2∆− 2Σ)2

)}
×arccoth

(
i

2Σ − 2 s′ − t√
2Σ − 2∆− t√−2Σ − 2∆+ t

)
,

G
(1)
1,1(t, t

′) =
t
√
t− 2∆− 2Σ√

t+ 2∆− 2Σ
4π t′ (t′ − t) .
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21. A. Roessl, Nucl. Phys. B555 (1999) 507 [hep-ph/9904230]
22. H. Nielsen, G. C. Oades, Nucl. Phys. B55 (1973) 301
23. N. Hedegaard-Jensen, Nucl. Phys. B77 (1974) 173
24. N. O. Johannesson, J. L. Petersen, Nucl. Phys. B68 (1974)

397
25. M. Jamin, J. A. Oller, A. Pich, Nucl. Phys. B587 (2000)

331 [hep-ph/0006045]
26. P. Estabrooks, R. K. Carnegie, A. D. Martin, W. M. Dun-

woodie, T. A. Lasinski, D. W. Leith, Nucl. Phys. B133
(1978) 490

27. N. H. Fuchs, M. Knecht, J. Stern, Phys. Rev. D62 (2000)
033003 [hep-ph/0001188]
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